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an arbitrary orthogonal curvilinear coordinate system. This analogy is also detected be- 
tween solutions of axisymmetric problems for a continuous layer (half-space) and a layer 

(half-space) with an absolutely stiff and smooth cylindrical inclusion. 
In fact, the kernels of the integral transforms used in solving the problems mentioned 

satisfy the equation D2f = -y2f (5) 

It follows from (2), (4),(5) that the algorithms to determine the transformant of the in- 

variant functions a,, ‘t, w, F agree in the cases mentioned. Therefore, the most tedious 

part of the solution can be used in examining a number of problems. The same refers 

to the solutions of the second kind represented in Cartesian and curvilinear coordinates. 

The inversion formulas, expressions for the load transformant and results of a compu- 

tation are understandably distinct for analogous problems. 
The order taken to analyze inhomogeneous bodies is also used in a variant of the finite 

strip method (interpolation method) proposed in [5, 61 for the consideration of the multi- 

layered bodies, and contributes to shortening the computational operations. 
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The stability is studied of the neutral equilibrium of a system, in a linear appro- 

ximation, which has two resonances locked at two frequencies, each of which 
does not cause instability separately in a second approximation. It is shown 
that in contrast to the case of independent resonances and those locked at one 
frequency, stability can be lost (in the same order). 



On the problem of interaction of re-sonancea 913 

A system of ordinary differential equations with real coefficients 

dx=ldt=AP,zp+A~,i32u+O(1213), a,tLy=t, . . . . n 
is considered, 

The eigenvalues of the Uuearized system are assumed pure imaginary and prime, The 
stability is studied of the equilibrium position Xd = 0 with respect to variations in the 
initial data if the system possesses two third order resonances. The stability is understood 
according to the Birkhoff definition. 

This question has been examined partially in [I]: it has been shown that interaction 
between two resonances, each of which causes no instability (we call them inessential 
here, for brevity}, will not result in instab~ty if the resonances are inde~ndent or locked 
at one frequency. The case of locking at two frequencies is much more complex than 
the preceding. Examples of specific systems are presented in [l], which show that stabi- 
lity can be lost because of the interaction between inessential resonances. 

The interaction between such resonances is examined in more detail below. This in- 
vestigation d&s not encompass all possible variants, but includes an example from [l] 
as a particular case. 

Thus, let the system (1) have the following (inessential) resonances: 

L, - 2hl = 0, hr + hz + h3 = 0 

Let us write the normal form of the system being investigated in a second approxima- 
tion 

91’ = &?/I + B,y1*y2 + clY2*Y3* (2) 

YZ= = h2~2 + B2yx2 + C,YI*, YES** ti3 = by3 + C,Y,*Y,* 

yj' = hjyj, j = 4, . . ,, 1, 21 = n 

(the equations for the conjugate quantities are analogous). Let us introduce the polar 
coordinates ya = p,ei'pzt a = 1, . _ ., 1. Then (2) becomes (equations for qa are not 
written down) 

dP%ldt = 2Pj (911~1~~2 + 2Qj (WPIP~P~, i = 1, 2 

dP&'dt = 2Qs ~*~)P~P~P~ 

(3) 

dill 
- = 2PlZPZ dt p12 + zps2 *,’ --=)+ 2plPsps(-~++) 

Ws -= 
dt P12PZ 

( 
2Pj=~jC0S~1+ajSiSI~l, j=1,2 

2Qk = Pk COs $2 + yk sin '421 k = 1, 2, 3 

#i1 = 2Re &, a, = -2ImB$, #& = 2ReB,, a, = 21mB, 

Ilk = 2RSCk, ?k = 2ImCk, k = 1, 2, 3, ‘$1, = ‘Pa - 2V,, 92 = Cp, + 
92 + 'ps 

Let us examine the class of systems (3) for which @j = PR = 0, j = 1, 2, k = 1, 2, 3, 
so that 

dpj2/dt = aplBp2 sin 41 + yjPrP2Ps sin $3, j = t, 2 

dP8dt = %P~P~PS Sin% 

(4) 

d’h 
dt 
-= CQS*l+PlP2PS 

Yl 
-pr2 +$$- @x3 92 
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4’2 ( al a2 
dt = P12P2 - -gr + 2p22 

) 
cc@ 91+ PlP2PZ 

( 
+ + & + +!$- 

) 
cos 92 

The inessentiality condition for the first resonance means that a, = -ka,, k > 0 [l]. 
The requirement for inessentiality of the second of the resonances being studied means 
that among the yl, Yz, YZ there is at least one change of sign [2]. Let us assume that 

yly2yZ # O* 

The system (4) has the integral 

1 = kp12 + ~2~ - xpZ2, 
x = kyl + ~2 

Yz 

Hence, if x < 0,then the equilibrium is stable. 
Now, let x > 0. Let us investigate under what constraints on the coefficients the sys- 

tem (4) has a growing solution of the invariant ray type 

PI (t) = b (t), ~2 (t) = k,b (t), pa (t) = k,b (t), k,, k, > 0 (5) 
W 1 at > 0, b (0) > 0, $1 = $2 = 3% I 2. 

As is easy to see, it is necessary to require that YS be positive and ha should satisfy the 
quadratic equation YlZ2 + c,z - y3 = 0 (6) 
and 

k,’ = kz (-ko, + kzy,) / YZ 

Therefore, a solution of the form (5) of the system (4) exists under the following con- 
ditions : 

Yz > 01 -k% + kzY2 > 0, kY1 + Y2 > 0 (7) 

where k3 is a positive root of Eq. (6) (it exists for any a, if yl > 0 and for ~1~ > 0 if 
Yl < 0). 

Thus it has been shown that the equilibrium of the system (4) is stable if (kyr + Y2) / 

yz < 0, and is unstable upon compliance with the inequalities (7). 
It is seen that for 

Yz <Ol -k% + ksY, > 0, kY1 + Y2 < 0 

the equilibrium is also unstable since a growing solution of the form (5) exists, where 
$1 = lJJ2 = -n / 2. 

Let us note that a domain remains in the space of coefficients of the system (4) in 
which the instability, if it exists, has a different character. In the case y1 > 10, ys > 0 
we have stability for y2 < -kyland instability for ka, / k, < ya < 0. For y1 < 0, ys > 0 
(then y2 > 0) , we have stability for 0 < yz < - kyl, and instability for ya > kc1 / k,. 
The interval between stability and instability zones will be the smaller, the smaller the 
ys and will shrink to a point for the degenerate system in which ys = 0. 
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